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Introduction

The study of peer-to-peer (P2P) networks, particularly those as significant as the Gnutella
network, holds profound implications for our understanding of digital communication and
file-sharing ecosystems. P2P networks are fascinating because they embody the principles of
decentralization, resilience, and community-driven growth much like human networks. P2P
networks are not just technical constructs, but reflections of collective human behavior in
digital space. Through this research, we explore the topology and dynamics of the Gnutella
network to glean insights into how information and resources flow within such a decentralized
system. Our findings have the potential to inform contributors and users of the significance
of participation in robust, efficient, and equitable network structures, while simultaneously
identifying key-players in peering.

Network Theory

Network theory offers a lens through which the complexity of P2P interactions can be under-
stood. Social concepts like “six degrees of separation,” “scale-free networks,” and “small-world
phenomena” are considered highly relevent to this field of study[1][3]. P2P networks are often
posited as scale-free[2], characterized by a power-law degree distribution where most nodes
have a few connections, and a few nodes (hubs) have a very high number of connections. This
structure greatly impacts the network’s robustness and the efficiency of file transfers, and is
the primary focus of this article. Additionally, the “strength of weak ties” theory may explain
the pivotal role of less-connected nodes in bridging distinct communities within the network,
though will not be explored in the paper. Still, the hypotheses are structured around these
theoretical underpinnings:

H1: The Gnutella network exhibits a scale-free topology, indicative of the presence
of hub nodes that dominate the connectivity within the network.
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H2: Nodes with higher betweenness centrality play a crucial role in the network’s
data flow, acting as bridges in the file-sharing process.
H3: The network demonstrates resilience against random node failures, a charac-
teristic trait of scale-free networks.

These hypotheses are grounded in seminal works such as Albert-László Barabási discovery of
scale-free networks and Granovetter’s exploration of the strength of weak ties, among others.

Method and Data

To empirically investigate these hypotheses, we will deploy network analysis methods on a
dataset derived from the Gnutella network. This dataset comprises an edgelist detailing the
connections between individual nodes on a given day in 2002. We will employ centrality mea-
sures to identify important nodes within the network and explore the degree distribution to
confirm or refute the scale-free nature of the network. Additionally, we will conduct robustness
tests through simulated node failures to observe the network’s response to disruptions. The
choice of a Davidson-Harel layout algorithm in our visualization aims to prevent node overlap
and ensures that edges do not obscure nodes, which significantly enhances the clarity and in-
telligibility of our network diagrams for accurate identification and interpretation of structural
patterns within the network. Through this methodological approach, we aim to answer our
research questions and validate our hypotheses, thereby contributing valuable insights to the
field of network theory.

Analysis

Sampling the Data

The smallest dataset from Ripeanu, Foster, and Iamnitchi’s Gnutella analysis contained thou-
sands of nodes. With the intent to display the data on a single page in a PDF, including all
nodes was considered infeasible. As such, a representative sample of one quarter of all nodes
was taken to allow for an intelligble visualization in PDF format. The sample used in this
instance is easily reproducable by specifying set.seed(1).

# Read the edgelist into R
edgelist <- read.table("/Users/pangea/Documents/Education/Purdue/class/COM 411/FINAL PROJECT/p2p-Gnutella08.txt", header = FALSE, sep = "\t", col.names = c("FromNodeId", "ToNodeId"))

# Calculate the number of unique nodes
num_nodes <- length(unique(c(edgelist$FromNodeId, edgelist$ToNodeId)))

# Determine the number of nodes to sample (1/4 of the nodes, in this instance)
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num_sample_nodes <- num_nodes / 4

# Get a list of unique nodes
nodes <- unique(c(edgelist$FromNodeId, edgelist$ToNodeId))

# Randomly sample the nodes
set.seed(1) # for reproducibility
sample_nodes <- sample(nodes, size = num_sample_nodes)

# Create a mask to filter edges that have both nodes in the sample_nodes list
edge_mask <- edgelist$FromNodeId %in% sample_nodes & edgelist$ToNodeId %in% sample_nodes

# Subset the edgelist to only include edges between the sampled nodes
sampled_edgelist <- edgelist[edge_mask, ]

# Write the sampled_edgelist to a file: p2p-GnutellaSAMPLED.txt (HARDCODED, pls fix!)
write.table(sampled_edgelist, file = "/Users/pangea/Documents/Education/Purdue/class/COM 411/FINAL PROJECT/p2p-GnutellaSAMPLED.txt", row.names = FALSE, col.names = FALSE, sep = "\t")
print("DONE")

[1] "DONE"

A general outline of the network structure is best visualized below, without custom layout.

# Example Visualization
ggraph(g, layout = 'igraph', algorithm = 'fr') +
geom_edge_link() +
geom_node_point() +
theme_void()

Warning: Using the `size` aesthetic in this geom was deprecated in ggplot2 3.4.0.
i Please use `linewidth` in the `default_aes` field and elsewhere instead.
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Are P2P Netoworks Scale-Free?

In order to assess the viability of hypothesis H1, we examine the network’s degree distribution.
The code below begins by preparing a dataset of nodes that excludes nodes without any
connections, or peers that are not actively involved in any file transfers. The degree distribution
is then transformed on a logarithmic scale in order to discern a power-law relationship. Linear
regression is performed to calculate an R-squared value and line of best fit which serve to
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demonstrate whether or not the network abides by a power-law: where a straight line validates
the scale-free nature of the network.

# Create object network_metrics as a dataframe containing the degree for all nodes
network_metrics <- g %>%
activate(nodes) %>%
mutate(degree = centrality_degree(), # Node degree

closeness = centrality_closeness(), # Closeness centrality
betweenness = centrality_betweenness()) %>%

as.data.frame()

# Ensure that degree values are greater than 0 (Surprisingly, nodes with degree=0 exist in the data)
network_metrics <- network_metrics %>% filter(degree > 0)

# Pre-calculate the log values
degree_density <- network_metrics %>%
count(degree) %>%
mutate(density = n / sum(n),

log_degree = log(degree),
log_density = log(density))

# Fit a linear model on the log-log transformed data
lm_model <- lm(log_density ~ log_degree, data = degree_density)

# Obtain the summary of the model
summary_lm <- summary(lm_model)

# Print the summary to see coefficients, p-values, etc.
print(summary_lm)

Call:
lm(formula = log_density ~ log_degree, data = degree_density)

Residuals:
Min 1Q Median 3Q Max

-1.4739 -0.9112 0.3129 0.8638 1.1391

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02385 0.81192 -0.029 0.9774
log_degree -2.25142 0.50986 -4.416 0.0031 **
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.059 on 7 degrees of freedom
Multiple R-squared: 0.7358, Adjusted R-squared: 0.6981
F-statistic: 19.5 on 1 and 7 DF, p-value: 0.003097

# Extract R-squared value and p-value
r_squared <- summary_lm$r.squared
p_value <- summary_lm$coefficients[2, 4]

# Plotting the degree distribution on a log-log scale
ggplot(degree_density, aes(x = log_degree, y = log_density)) +
geom_point() +
geom_smooth(method = 'lm', color = 'red', se = FALSE) + # Fit a linear model without confidence bands
labs(title = "Degree Distribution on Log-Log Scale with Best Fit Line",

x = "log(Degree)",
y = "log(Density)") +

theme_minimal() +
annotate("text", x = Inf, y = Inf, label = paste("R^2 =", round(r_squared, digits = 3)),

hjust = 11, vjust = 40) # Adjust 'x' and 'y' to position the label as needed

`geom_smooth()` using formula = 'y ~ x'
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R^2 = 0.736
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# Output R-squared value to check it before adding it to the plot
cat("R^2:", r_squared, "\n")

R^2: 0.7358385

cat("P-value:", p_value, "\n")

P-value: 0.003097136
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The visualization above presents compelling evidence in support of the scale-free hypothesis.
The degree distribution, when plotted on a log-log scale, reveals a linear trend with an R-
squared value of approximately 0.738, suggesting that the network’s degree distribution does
indeed follow a power-law. Importantly, the p-value associated with this analysis is 0.0031,
which strongly supports the statistical significance of this finding.While the fit is not perfect—
-as one might expect in the real-world—-it certainly aligns with the theoretical model of scale-
free networks described by Barabási and Albert.

Basically, hubs (or, super-seeders) are tremendously beneficial for network efficiency and re-
siliency in file transfers. At the same time, their centrality also makes them points of vulner-
ability. In the context of internet piracy, for instance, targeting these hubs would be in law
enforcement’s best interest to disrupt the distribution of illegal content. Conversely, from the
file-sharer’s perspective, oveerreliance on such hubs could enable for a widespread and unex-
pected dissemination of malware. Or, in the case that an actor wanted to disable the network,
a denial-of-service attack on any one hub could have profound impact on file availability and
download speeds.

The scale-free topology informs us mostly about the network’s resilience. While P2P networks
are generally considered robust to random failures, such networks can be disproportionately
crippled by targeted attacks on their most connected nodes.

Node Importance

Shifting focus to H2, we seek to identify which super-seeders increase the speed of the overall
network. The nodes’ betweenness centrality, a measure of their role in facilitating connec-
tions between other nodes, is calculated and visualized to demonstrate their influence over
the network beyond mere connectivity. In other words, we anticipate to find numerous key
intermediaries–seeders who might not necessarily posses the most connections but are vital in
maintaing network cohesion and efficiency (download speeds).

# Calculate basic network metrics
g <- g %>%
activate(nodes) %>%
mutate(degree = centrality_degree(), # Node degree

closeness = centrality_closeness(), # Closeness centrality
betweenness = centrality_betweenness()) # Betweenness centrality

# Convert the graph to a dataframe containing the degree for all nodes
network_metrics <- g %>%
activate(nodes) %>%
as.data.frame()

# Use a continuous color scale to represent betweenness centrality
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ggraph(g, layout = 'igraph', algorithm = 'dh') +
geom_edge_link(edge_width = 0.05, alpha = 0.1) +
geom_node_point(aes(color = betweenness)) +
scale_color_gradient(low = "blue", high = "red") +
theme_void() +
labs(title = "Network Nodes Colored by Betweenness Centrality",

color = "Betweenness Centrality")
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Our analysis indeed found several key seeders within the Gnutella network. While these nodes
may not boast the highest number of direct connections, their placement within the network
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amplifies their importance, validating H2. The nodes identified through this analysis likely
represent the network’s super-seeders—entities that not only share a vast amount of content
but also enable significant portions of the network’s traffic to pass through them, reinforcing
the network’s reliance on their uninterrupted operation.

Each node’s central positioning underscores a duality: these nodes enhance file-sharing effi-
ciency while contributing to an overreliance on a few nodes. Again, these nodes could be
targeted by law enforcement or other actors to prevent the distribution of illegal content or
cut off a segment (cluster) of the network from access to resources. Conversely, should any
hub be compromised or decide to distribute malware within their seeded torrents, users who
neglect best practices in file verification and digital signatures are at significant risk. This
hypothetical underscores the inherent dangers in a network where substantial trust and traffic
are concentrated in just a few nodes. The findings not only advocate for greater participation
from users with powerful hardware and speedy internet connections, but also reinforce the
necessity for users to adhere to best practices in digital signatures. These insights suggest that
P2P networks might not be as decentralized as one might expect.

Network Resiliency

Understanding how peer-to-peer (P2P) networks respond to random failure is crucial for assess-
ing their robustness and resilience. This section of analysis focuses on the network’s resilience
by simulating random node failures—a scenario that mirrors potential real-world disruptions,
such as server outages or users disconnecting from the network. Specifically, we investigate
the effects of these failures on two key network properties: the size of the largest connected
component, which reflects the network’s ability to remain interconnected, and the average
path length, which influences the efficiency of data transfer across the network. The code
provided below systematically removes 10% of the nodes from the network to simulate these
random failures and measures the subsequent changes in these metrics.

library(tidygraph)
library(igraph)

# Function to simulate random failures
simulate_random_failures <- function(graph, fraction_to_remove) {
num_nodes_to_remove <- as.integer(vcount(graph) * fraction_to_remove) # "all nodes in the graph * failure rate"
nodes_to_remove <- sample(V(graph), num_nodes_to_remove)
graph_after_failures <- delete_vertices(graph, nodes_to_remove)
return(graph_after_failures)

}

# Function to calculate metrics
calculate_network_metrics <- function(graph) {

10



largest_comp_size <- max(components(graph)$csize)
avg_path_length <- mean_distance(graph, directed = FALSE)
return(c(largest_comp_size, avg_path_length))

}

# Calculate baseline metrics
baseline_metrics <- calculate_network_metrics(g)
print(paste("Baseline Largest Component Size:", baseline_metrics[1]))

[1] "Baseline Largest Component Size: 940"

print(paste("Baseline Average Path Length:", baseline_metrics[2]))

[1] "Baseline Average Path Length: 6.6430259243904"

# Set number of trials
num_trials <- 30
results <- matrix(nrow = num_trials, ncol = 2) # Prepare a matrix to store results

# Simulate multiple failures and calculate metrics
set.seed(123) # Ensure reproducibility
fraction_to_remove <- 0.1 # Remove 10% of nodes

for (i in 1:num_trials) {
simulated_graph <- simulate_random_failures(g, fraction_to_remove)
results[i, ] <- calculate_network_metrics(simulated_graph)

}

# Calculate average results
average_results <- colMeans(results)
names(average_results) <- c("Average Largest Component Size", "Average Path Length")

# Print the average results and compare to baseline
print("Average metrics after failures:")

[1] "Average metrics after failures:"

print(average_results)
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Average Largest Component Size Average Path Length
793.600000 6.987633

print("Comparison to baseline:")

[1] "Comparison to baseline:"

print(paste("Change in Largest Component Size:", baseline_metrics[1] - average_results[1]))

[1] "Change in Largest Component Size: 146.4"

print(paste("Change in Average Path Length:", baseline_metrics[2] - average_results[2]))

[1] "Change in Average Path Length: -0.344607302358128"

The statistical analysis demonstrates that the Gnutella network’s structure responds well to
random disruptions. The random removal of 10% of nodes reduced the average largest com-
ponent size by only 15.7%, and increased the average path length by a mere 5.2%. Initially,
our network displayed a largest component size of 940 nodes and an average path length of ap-
proximately 6.643. And, after simulating random failures across 30 trials, the average largest
component size observed was approximately 793 nodes, while the average path length was
only slightly increased to about 6.987. These results affirm our hypothesis, H3, regarding the
network’s robustness, as the network largely preserves its connectivity and functional integrity
despite significant node losses.

Resilience is necessary in decentralized systems, such as Gnutella, where maintaining service
continuity through random failure is crucial. The slight increase in average path length suggests
that, while the network remains largely intact, the efficiency of data transmission experiences
marginal losses. The effect on file availability is unknown, but should be expected (although
minimal). This is an expected outcome as the network compensates for the loss of nodes by
rerouting connections, which typically leads to longer path lengths.

This analysis not only supports the theoretical model of scale-free networks as described by
Barabási and Albert but also provides a quantitative basis for evaluating the resilience of
real-world network infrastructures against random disturbances. Further investigations could
explore different rates of node removal or the impact of targeted attacks to fully understand
the spectrum of network resilience in P2P systems.
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Conclusion

Our analysis explored the intricate dynamics of the Gnutella P2P network, shedding light
on its complexity and resilience. Through a blend of network theory and empirical investiga-
tion, we’ve confirmed hypotheses regarding the network’s structural makeup and operational
robustness. The scale-free nature of the network was demonstrated, underscoring both the
network’s efficiency and vulnerability. Moreover, our exploration of betweenness centrality
identified the specific nodes critical in maintaining network cohesion, while also recognizing
them as potential points of exploitation.

Examining the network’s resilience to random node failures further validated the network’s
robustness in sustaining service continuity in the decentralized system. The network displayed
remarkable resilience to significant disruptions, underscoring its capacity for fault-tolerance
and functionality under ordinary adverse conditions.

Looking ahead, further research could benefit from a more detailed dataset that includes
specific information about file transfers, such as file types, sizes, and other temporal dynamics
of file sharing. This would provide deeper insights into the nature of the content being shared
and the social dynamics within the network. Questions such as the influence of popular
culture on illegal file-sharing activities, the role of internet speeds in node centrality, and the
implications of file-sharing on copyright infringement could be explored to provide a richer
understanding of P2P networks.

13



References

1. Montresor, A., & Jelasity, M. (2009). PeerSim: A scalable P2P simulator. 2009
IEEE Ninth International Conference on Peer-to-Peer Computing (P2P ’09).
https://doi.org/10.1109/P2P.2009.5284506

2. “Scale-Free Networks.” (2010). P2P Foundation. Retrieved from https://wiki.p2pfoundation.net/Scale-
Free_Networks

3. Schollmeier, R. (2001). A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. Proceedings First International Conference
on Peer-to-Peer Computing (P2P ’01). https://doi.org/10.1109/P2P.2001.990434

4. Ripeanu, M., Foster, I., Iamnitchi, A. (2002). Mapping the Gnutella Net-
work: Properties of Large-Scale Peer-to-Peer Systems and Implications for Sys-
tem Design. IEEE Internet Computing (Volume: 6, Issue: 1) Retrieved from
https://doi.org/10.48550/arXiv.cs/0209028

5. tom91. (2019). Using log-log graph to find equation of power law relationship?.
CrossValidated. https://stats.stackexchange.com/questions/392464/using-log-log-graph-
to-find-equation-of-power-law-relationship

14



Glossary

1. Torrent: A torrent file is a metadata file used by BitTorrent clients to initiate the
download of the actual content files, which are not stored on a central server but are
distributed among users. A torrent contains information about pieces of the file(s) such
as their size, network locations of trackers (which are servers that coordinate the distri-
bution of files among users), and other data necessary to download and assemble the
file.

2. Seeder: In the context of BitTorrent, a seeder is a user who has a complete copy of the
file being shared across the network and continues to upload it to other peers. Seeders
are crucial to the health of a BitTorrent network because they increase the availability
of file segments to new downloaders.

3. Super-seeder: A super-seeder is a seeder mode designed to maximize the distribution
efficiency of a torrent. When enabled, this mode allows the seeder to send out pieces
of a file to different peers, ensuring that all pieces are available in the network at least
once before sending out duplicates. This strategy helps in spreading out the file quickly
especially when there are many downloaders and not enough seeders.

4. Digital Signature: A digital signature is a mathematical scheme for verifying the au-
thenticity of digital messages or documents. In P2P networks, digital signatures are used
to verify that a file has not been altered in transit, ensuring that what was downloaded
is what the seeder intended to distribute. This is crucial for maintaining trust in the
integrity of files exchanged over decentralized networks.
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